1. Gordon MO et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary primary open-angle glaucoma. Arch Ophthalmol 2002; 120:714-720, discussion 829-30
  2. Reus et al Clinical Assessment of Stereoscopic Optic Disc Photographs for Glaucoma: The European Optic Disc Assessment Trial. Ophthalmology 2010; 117:717-23
  3. van der Schoot J et al. Accuracy of Matching Optic Discs with Visual Fields. The European Structure and Function assessment Trial (ESAFAT) Ophthalmology 2013; 120:2470-75
  4. Quigley HA, Enger C, Katz J et al. Risk factors for the development of glaucomatous visual field loss in ocular hypertensio. Arch Ophthalmol 1994; 112: 644-649
  5. Pablo LE, Ferreras A, Schlottmann PG. Regional nerve fibre layer evaluation in ocular hypertension eyes using optic coherence tomography and scanning laser polarimetry in the diagnosis of early glaucomatous defects. Br J Ophthalmol 2011; 95: 51-55
  6. Kim HG, Heo H, Park SW. Comparison of scanning laser polarimetry and ocular coherence tomography in preperimetric glaucoma. Optom Vis Sci 2011; 88:124-129
  7. Pierro l, Gagliardi M, Indiano L et al. Retinal nerve fibre layer thickness reproducibility using seven diferente OCT instruments. Invest Ophthalmol Vis Sci 2012; 31: 5912-5920
  8. Mwanza JC et al. Ability of Cirrus HD_OCT Optic Nerve Head Parameters to Discriminate Normal from Glaucomatous Eyes Ophthalmology 2011; 118: 241-248
  9. Mwanza JC et al. macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral-domain optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci 2011; 52: 8323-9
  10. Mwanza JC et al. Glaucoma Diagnostic Accuracy of Ganglion Cell-Inner Plexiforme Layer Thickness: Comparison with Nerve Fiber Layer and Optic nerve Head. Ophthalmology 2012; 119: 1151-1158
  11. Medeiros FA et al. Retinal Ganglion Cell Count Estimates Associated with Early Development of Visual Fields Defects in Glaucoma. Ophthalmology 2013; 120: 736-744
  12. Shin HY et al.  Glaucoma Diagnostic Ability of Ganglion Cell-Inner Plexiforme Layer Thickness Differs According to the Location of Visual Fields Loss. Ophthalmology 2014; 121: 93-99
  13. Chauhan BC, Burgoyne CF. From clinical examination of the optic disc to clinical assessment of the optic nerve head: a paradigm change. Am J Ophthalmol 2013; 156: 218-227
  14. Reis AS, O’Leary N, Yang H, et al. Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation. Invest Ophthamol Vis Sci 2012; 53: 1852-1860
  15. Chauhan BC, O’Leary N, Almobarak FA, et al. Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. Ophthalmology 2013; 120: 535-543
  16. Strouthidis NG, Fortune B, Yang H et al. Longitudonal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma. Invest Ophthalmol Vis Sci 2011; 52: 1206-1219
  17. Leung C K S et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography; a prospective analysis of age-related loss. Ophthalmology 2012; 119: 731-737
  18. Leung C K S et al. Impact of Age-related Change of Retinal Nerve Fiber Layer and Macular Thicknesses on Evolution of Glaucoma Progression. Ophthalmology 2013; 120: 2485-2492
  19. Na JH et al. Detection of glaucoma progression by assessment of segmented macular thickness data obtained using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 2012; 53: 3817-3826
2ª Edição - Maio 2014